MFM & MFC

[측정원리]-차압방식

Lamina Flow Elemene의 차압측정을 통해 Volume을 측정하고, 내장된 온도 센서, 절대압 센서를 이용해 Mass를 구하는 방식이다.

방정식 1

 $Q = (P1 - P2)\pi r4/8\eta L$

Where

Q = Volumetric Flow Rate

 P_1 = Static Pressure at Inlet

 P_2 = Static Pressure at Outlet

r² = Hydraulic Radius of Restriction

 $\eta = (eta)$ Absolute Viscosity of Fluid

L = Length of Restriction

방정식 2

 $Q = K(\Delta P/\eta)$

Where

K = constant dependent upon the geometry of the LFE.

방정식 3

M = Q(Ts/Ta)(Pa/Ps)(Zs/Za)

Where

M = Mass Flow

Q = Volumetric Flow (From Equation 2)

Ts = Absolute Temperature @ Standard Condition in Kelvin

Ta = Absolute Temperature @ Flow Condition in Kelvin

Pa = Flow Absolute Pressure

Ps = Absolute Pressure @ Standard Condition

Za = Compressibility at Measured Conditions

Zs = Compressibility at Standard Conditions

[제품특징 및 장점]

최대3,500PSIG, 4,200PSIA 고압에도 탁월한 작동 부식성 유체 고정밀성을 통한 초 저유량 측정 가능 고정밀성을 통한 대유량 측정 가능 내장 Display를 통한 다양하고 편리한 기능 MFM/MFC의 경우, 혼합가스사용, 다양한 가스 선택, 적산기능, Back Light, PID 조절, 온도/압력/부피/질량 정보, 다양한 통신 프로토콜 등

[적용분야]

고정밀을 요하는 연구 및 생산 환경 빠른 응답시간을 보장하는 광범위한 프로세스 고정밀, 낮은 차압 요구 사항이 있는 유체 및 가스 프로세스 유량 및 압력장치를 사용하는 자동화 엔지니어, 시스템 통합업체 및 공장

항공 우주 연료 전지 반도체 (수소장비, 디스플레이장비 등) 수소 전기 에너지 발전 통신용 유리 광섬유 방적 로켓 부품의 누출 테스트 생화학 공정을 통한 의약품 생산 생물 의학 식품 생산