

FN-MASS FLOWMETER MODEL : KC-7730 Series

#FN-Mass flow meter

Golden Rules Co.,Ltd.

A-1805, Songdomirae-ro 30, Yeonsu-gu, Incheon, Korea Tel : +82-32-817-1240 E-mail : <u>hhm617@hanmail.net</u> http://www.goldenrules.co.kr

Contents

æ

Warning and caution	2
Chapter 1 Overview	
How to use the manual	3
Note and safety	4
Product acquisition, technical support	4
KC-7730 sensing principle	5
Chapter 2 Installation and Wiring	
Installation overview	6
Flow meter installation	7
Wiring	8
Chapter 3 Operation	
Front display configuration	9
Configuring menu settings	10
Front display	11
3.1. General(Group 1)	12
3.2. State (Group 2)	13
2 2 State (Crown 2)	11
3. 3. State (Group 3)	14
3. 3. 1. Error checking	15
3. 3. 2. UIIIL	15
3. 3. 4. Elow clear	15
3. 3. 5. HV limit	16
3 3 6 IV limit	16
3 3 7 Flow sum limit	16
3 3 8 Temp limit	17
3. 3. 9. RS 485 ADDR	17
3. 3. 10. Sensor Zero	17
3. 3. 11. Date	18
3. 3. 12. Time	19
3. 3. 13. Throat diameter	20
3. 3. 14. Normal density	20
3. 3. 15. RTD CALIBRATION	21
3. 4. Property (Group4)	21
3 5 Elow control (Group 5)	22
3. 5. 1. Control On – Off	23
3. 5. 2. Control input	23
3. 5. 3. Control target	23
3. 5. 4. Dead band	24
3. 5. 5. LOCK level	24
3. 5. 0. LOCK COURL	25
2. 5. 9. Stop ratio	25
3.5.9 Function	25 26
3. 5. 10. Center move time	26
3. 5. 11 Analog output (4 – 20mA)	26
Chapter 4 RS485 Protocol	28
Chapter 5 Failure Diagnosis and A/S	33
Chapter 6 Area of Use and Quality Assuranc	34

Warning and caution

- Before installing the FN-MASS, foreign substances in the bureaucracy must be removed, check that the flow direction and the installation direction match, and check that the FN-MASS connection is fully tightened and there is no leakage.
- Check that the power input 24V DC connection terminal is correct, the output terminal connection 4 ~ 20mA DC is correct, and the control cable is used as a shielding wire.
- Make sure the high and low pressure valves and equivalent valves of the FN-MASS 3-way block valve are open. However, if the pipe is flushed to remove foreign substances from the pipe, close the high and low pressure valve to prevent foreign substances from entering the pipe before performing flushing.
- The flow meter uses a pressure tube, so be careful not to damage it. In particular, do not move or transport the product by holding only the pressure tube.
- When moving or installing, fix the eyebolt (refer to the figure below) on the flange with a rope.
- Do not install in a place subject to vibration such as a truck.
- Transport the FN-MASS so that its indicator is in the forward direction.
- Since the life of FN-MASS is affected by the ambient temperature, make sure that the ambient temperature of the installation site does not exceed the allowable temperature (-20 ~ +60°C).
- Make sure the flow meter power is off before making any wiring.
- Opening the mass flow meter cover with power applied in an explosion-proof area may cause an explosion. Be careful.
- The rated power supply of FN-MASS is DC 24V, and to prevent device damage and breakdown, use a power suitable for the rated power.
- The wiring terminal has a low risk of electric shock, but it may cause damage or fire due to incorrect contact with the human body and electric current.
 Please pay attention to wiring.
- To prevent malfunction due to external electrical signals, connect the ground wire to the ground terminal (M4) of the lug part of the FN_MASS enclosure.
 Be sure to install and use ring-type crimp terminals with insulation caps.
- When removing or removing the device, be sure to cut off the power before working, which may cause abnormal operation or malfunction.
- Ground

The power and ground wire of the device should be connected with 4mm² (AWG11) or more.

For grounding, connect external earth and internal earth at the same time.

In the case of internal ground, it is wired by our company and shipped.

When checking the indicator, connect a 250Ω resistor in series to the (+) of the flow signal output terminal.

Chapter 1 Overview

KC-7730 FN-MASS Flow Meter

Golden Rule's KC-7730 series high-precision mass flow meter senses the flow of fluid in industrial sites, and is applied to places such as adjustment and measurement of flow rate.

It is a fixed sensor installation type and uses a microprocessor to measure flow, adjust flow, and diagnose at the same time.

It can be applied according to the instantaneous value of mass flow rate, accumulated quantity and environment setting, and is displayed on a 2 x 16 LCD panel.

It is a programmable transmitter and can be easily set through RS-485S communication port and Golden Rule high-performance interface software or instrument panel display.

In the KC-7730 series of Golden Rule Co., Ltd., instantaneous flow rate, accumulated flow rate, response speed, electric potential cut-off, flow correction factor, etc. are initially protected by password and can be changed by the user.

You can check the performance of the instrument through the Smartinterface TM Software guide of Golden Rule,

Input power, output, installation, and packaging methods can be selected according to the user's request.

How to use the manual

This manual provides necessary information for installing and operating a smart differential pressure mass flow meter. The chapters in the five parts of this manual cover the following areas:

- . Chapter 1: Overview
- . Chapter 2: Installation and wiring instructions
- . Chapter 3: How to operate (Explain system operation and programming)
- · Chapter 4: RS-485 Protocol
- . Chapter 5: Diagnosis and A/S of fault
- · Chapter 6: Area of Use and Quality Assurance

Please refer to the catalog for product specifications.

We mark references, cautions, and warnings throughout this book to draw your attention to important information.

warning!

This reference represents important information to prevent damage to people and products.

caution!

This reference represents important information for the protection of products and performance.

Reference

This statement is presented to inform you of important details.

Takeover of the product

When you receive the Golden Rule FN-mass flow meter, carefully check the exterior of the packaging box for damage that occurred during shipping. If the box is damaged, notify the domestic shipping company and notify the factory or agent. Remove the packing list and check that all components ordered are present. It is important to ensure that no spare parts or accessories are discarded along with the packaging material.

We do not return any products without initial contact with Golden Rule's customer support department.

technical support

If a problem is found with the customer's flow meter, please refer to each step of installation, operation and setup.

Check the configuration. Verify that the customer's settings and adjustments are free of disruptions as recommended by the factory.

For specific information and recommended actions, refer to Chapter 5 Diagnosis of Failure.

If the problem persists despite the troubleshooting procedures outlined in Chapter 5, please contact us by email.

E-mail: hhm617@hanmail.net

When contacting the technical support team, please provide the following information:

- Product serial number, model name (indicated on the product name plate)
- Problems caused and correct actions taken
- Application information (fluid, pressure, temperature and piping status)

FN - Mass Flow Sensing d/p type - Mass flow sensor (Flow Nozzle, Orifice, V-Cone, Pitot tube)

(KC-7730)Series measurement sensor

The unique D/P type-Mass Flow meter of Golden Rule Co., Ltd. guarantees the excellent accuracy of industrial flow meters, and robustness and reliability in the case of high pressure and high pressure.

As a differential pressure measurement method, the sensor uses an Orifice Plate, Flow Nozzle, V-cone, and Pitot Tube to minimize pressure loss during design, and it is a new technology mass flow meter that measures the flow rate by a calculation method utilizing its own patented technology.

This is a new concept mass flow transmitter that derives the flow rate with advanced calculation under the variable physical properties of the actual fluid.

It is capable of engineering under demanding conditions in the industrial field and is developed with domestic proprietary technology to minimize industrial losses and secure technical freedom, and is a measuring device with excellent accuracy and stability.

In addition, it can be used in various fluids, and the required straight pipe part of the existing differential pressure flow meter was supplemented through various experimental data so that the desired degree can be maintained even in a short straight pipe part.

By configuring a communication network

(RS-485), you can monitor the progress of the mass flow meter, and install an automatic valve to control the mass flow rate set by the user.

Fabrication of Flow Nozzle and Orifice complies with ISO-5167 standard and is made with ISO-9001 quality management system.

Chapter 2 Installation

Installation overview

The KC-7730 series flowmeters are factory calibrated to the specified pipe size as specified in the product's calibration certificate.

Factory calibration suggests calculating the average flow rate through which the flow passes through the pipe in order to determine the correct insertion depth.

(If the pipe size is different from the calibrated size of the flow meter, the changed setting value must be re-entered.)

warning!

Agency approvals for hazardous area installations vary by flow meter model. Refer to the flow meter nameplate for specific flow meter approvals prior to installation in hazardous areas.

<Horizontal installation>

<Vertical installation>

O In order to prevent deterioration of the life or performance of the flow meter, install it correctly, taking into account the installation location, installation direction, and surrounding space.

- O When installing the product, align the arrow with the direction of fluid flow in the pipe, and install the FN-MASS so that the differential pressure sensor is horizontal (the display is horizontal at the time of shipment), and can be used for piping in either vertical or horizontal direction.
- O It is recommended to avoid places subject to vibration or shock as much as possible. If there is a pulsation of the fluid, install a device that can absorb the pulsation and install the FN-MASS. In particular, when installing the FN-MASS, be careful as errors and operating errors may occur if the gasket is smaller than the inner diameter of the pipe.

Requirements for normal flow measurement

- This flow meter is a mass flow meter using a precision sensor. Be careful as it may be affected by impact.
- Secure the distance between the front and rear ends of the flow meter as much as the specified distance. If there are bends such as valves or elbows, secure an additional distance. In the case of built-in flow rectifier, the required straight pipe part can be reduced.

	Normal	Bend	Conditioner
UP	10D	15D	5D
DOWN	4D	5D	3D

* D: Flow meter inner diameter

During initial installation, follow the procedure below.

Open all 3-way manifold values to equalize the influence of the pressure sensor by fluid pressure. The equivalent method is to close only the equivalent value in the center direction after a certain period of time has passed with all three-way values open.

- ① If there is an offset value of the differential pressure sensor that may occur during movement and installation after opening the equivalent valve, complete the zero point setting through the manual sensor auto zero setting method.
- ② Open the rear purge value of the differential pressure sensor to remove impurities. In the case of liquids, in particular, use after completely removing the gas (air) stagnant inside the sensor.
- ③ If fluid flows, close the equivalent valve for normal use.

Wiring

Terminal block

- The wiring of analog output is marked as I (+) and I (-) on the top of the terminal block for a 2-wire loop, and the part where the flow signal 4 ~ 20mA is output is I (+) and I (-). Please wire.
- If there is no special request, the rated power is DC 24V, and it is connected to P(+) and P(-) of the power. If the power is less than DC 12V, please specify in the order form or contact us.
- The overall wiring length should be within 200m.
- If wire fragments remain inside the flow meter during wiring, it may cause abnormalities, breakdowns, or malfunctions. Do not leave any fragments.

Display

3.1 Display front and screen display

inside the protective device

A1

A2

А3

Α4

each menu group

alarm

display

key

Remote

control receiver Display of flow status and temperature information

set flow rate flows

accumulated value.

than the set value

Display and parameter setting and change

Receiver by user's remote control command

Screen display and parameter information display of

value.

Lights up when more flow than the

Lights up when a small flow rate

flows compared to the set flow rate

Lights up when a large amount of

flow flows compared to the set

Lights up when the temperature

inside the protective device is higher

MODE	Used to move between groups and change the number to be set
ENTER	Used to execute or save the setting command displayed on the current screen
SHIFT	Used to move the command within each group or the number of digits to be set.
EXIT	Used when moving the upper command

< Flow computer remote control key>

By pressing the operation button on the remote control, you can check the data of the flow computer and modify the option value through the infrared LED frequency value.

Power: Lithium battery CR2025 (3.0V DC)

Operating temperature: $-10^{\circ}C \sim +50^{\circ}C$

Infrared LED current: 300 ~ 700mA

Oscillation frequency: $3.64MHz \pm 0.5\%$

Operating angle: horizontal ±20°, vertical ±20°

This chapter covers how to program the flow meter and how to operate it to check the progress of the meter. All explanations on programming are conducted by looking at the LCD window.

Menu setting configuration

Operation

a

O main screen

Figure 3-1 KC-7730 front display and display screen

3.1. General screen (Group 1)

a

<12>

3.3. State screen (Group 3)

<16>

<17>

3.3.11. Date

3.3.12. Time

3.3.14. Normal density

<21>

• Return to Menu 3 Option screen

V

[3/5]

OPTION

3.4. Property (Group 4)

3.5. Flow control (Group 5)

a

3.5.2. Control input

3.5.3. Control target

3.5.4. Dead band

a

3.5.5. Lock level

a

<26>

3.5.9. Function

3.5.10. Center move time

Chapter 4 RS-485 Protocol

MODBUS RTU Read input register(0x04) RS485(2-wire), 9600bps, 8n1, no flow control

a

FLOW (0x1000 ~0x1FFF)

N o.	ADDR	PARAMETER	ISO	US	FORMAT	W I D T H	S C A L E	R / W	DESC.	M I S C
1	0x1000	AP1 pressure value	Кра	psi	0.00	4	-	RO	Psi see conversion table for unit calculation	
2	0X1004	AP2 Pressure value	Кра	Psi	0.00	4		RO	Psi see conversion table for unit calculation	
3	0X1008	AP3 Pressure value	kpa	psi	0.00	4		RO	Psi see conversion table for unit calculation	
4	0X100C	AP1 current value	mA	-	0.00	4		RO		
5	0X1010	AP2 current value	mA	-	0.00	4		RO		
6	0X1014	AP3 current value	mA	-	0.00	4		RO		
7	0X1018	DP1 Pressure value	kpa	Psi	0.00	4		RO	Psi see conversion table for unit calculation	
8	0X101C	DP2 Pressure value	kpa	psi	0.00	4		RO	Psi see conversion table for unit calculation	
9	0X1020	DP1 current value	mA	-	0.00	4		RO		
10	0X1024	DP2 current value	mA	-	0.00	4		RO		
11	0X1028	RTD temperature value	°C	-	0.00	4		RO	F,K see conversion table for unit calculation	
28	0X106C	MASS FLOW RATE	Kg/h Kg/M	Lb/h Lb/M	0.00	4		RO	Lb/h Units and minutes are calculated Conversion table reference	
29	0X1070	VOLUME FLOW RATE	m³/h m³/M	ft³/h ft³/M	0.00	4		RO	ft ³ /h Units and minutes are calculated Conversion table reference	

FLOW (0x1000 ~0x1FFF)

æ

N o.	ADDR	PARAMETER	ISO	US	FOR MA T	W I D T H	S C A L E	R / W	DESC.	MISC.
30	0X1074	ENERGY FLOW RATE	Kj/s	-	0.00	4		RO		
31	0X1078	NORMAL FLOW RATE	Nm³/h Nm³/M	Nft³/h Nft³/M	0.00	4		RO	ft ³ /h Units and minutes are calculated Conversion table reference	
32	0X107 C	PRESSURE	kpa	psi	0.00	4		RO	Psi see conversion table for unit calculation	
33	0X1080	TOTAL MASS FLOW	kg	lb	0.00	4		RO	lb see conversion table for unit calculation	
34	0x1088	TOTAL VOLUME FLOW	m ³	ft³	0.00	4	-	RO	ft ³ see conversion table for unit calculation	
35	0x1088	TOTAL ENERGY FLOW	MJ	-	0.00	4		RO		
36	0x108C	TOTAL NORMAL FLOW	Nm³	Nft ³	0.00	4		RO	Nft ³ see conversion table for unit calculation	
37	0x1090	BD TEMP.	°C	F	0.00	4		RO	F Psi see conversion table for unit calculation	
38	0x1094	TOUCH1 VOLTAGE	V	-	0.00	4		RO		
39	0x1098	TOUCH2 VOLTAGE	V	-	0.00	4		RO		
40	0x109C	TOUCH3 VOLTAGE	V	-	0.00	4		RO		
41	0x10A0	TOUCH4 VOLTAGE	V	-	0.00	4		RO		
42	0x1044	TOUCH REF VOLTAGE	V	-	0.00	4		RO	Touch reference voltage	

CONTROL (0x2000 ~0x2FFF)

N o.	ADDR	PARAMETER	ISO	US	FORMAT	W I D T H	S C A L E	R / W	DESC.	MISC.
1	0X2000	EXT CONTROL Value	-	-	0.00	4		RO		
2	0X2004	EXT CONTROL current	mA	-	0.00	4		RO	-	

ALARM (0x3000 ~0x3FFF)

10

00

N o.	ADDR	PARAMETER	ISO	US	FORMAT	W I D T H	S C A L E	R / W	DESC.	MISC.
1	0x3000	HV ALARM	%	-	integer	2	-	RO	1 = ALARM on, 0 = ALARM X	
2	0X3004	LV ALARM	%	-	Integer	2		RO	1 = ALARM on, 0 = ALARM X	
3	0X3008	BD TEMP ALARM	°C	F	Integer	2		RO	1 = ALARM on, 0 = ALARM X	
4	0X300C	TOTAL FLOW ALARM	Kg	Lb	integer	2		RO	1 = ALARM on, 0 = ALARM X	
5	0X3010	HV TIME(YY/MM)	-	-	YYMM	2		RO	HIGH = year, LOW = month (For the actual year, add 2000 to the received value)	
6	0X3014	HV TIME(DD/HH)	-	-	DDHH	2		RO	HIGH = day, LOW = hour	
7	0X3018	HV TIME(MM/SS)	-	-	MMSS	2		RO	HIGH = min, LOW = sec	
8	0X301C	HV VALUE	Kg/h	Lb/h	0.00	4		RO	Units are calculated Conversion table reference	
9	0X3020	LV TIME(YY/MM)	-	-	YYMM	2		RO	HIGH = year, LOW = month (For the actual year, add 2000 to the received value)	
10	0X3024	LV TIME(DD/HH)	-	-	DDHH	2		RO	HIGH = day, LOW = hour	
11	0X3028	LV TIME(MM/SS)	-	-	MMSS	2		RO	HIGH = min, LOW = sec	
12	0X302C	LV VALUE	Kg/h	Lb/h	0.00	4		RO	Units are calculated Conversion table reference	
13	0X3030	CLEAR TIME(YY/MM)	-	-	YYMM	2		RO	HIGH = year, LOW = month (For the actual year, add 2000 to the received value)	
14	0X3034	CLEAR TIME(DD/HH)	-	-	DDHH	2		RO	HIGH = day, LOW = hour	
15	0X3038	CLEAR TIME(MM/SS)	-	-	MMSS	2		RO	HIGH = min, LOW = sec	

SYSTEM (0x4000 ~0x4FFF)

æ

N o.	ADDR	PARAMETER	I S O	U S	- FORMA T	W I D T H	S C A L E	R / W	DESC.	MISC.
1	0x4000	MONITORING SOURCE	-	-	integer	2	-	RO	0 = MASS, 1 = VOLUME, 2 = NORMAL, 4 = PRESSURE	
2	0X4004	CONTROL SOURCE	-	-	integer	2	-	RO	0 = MASS, 1 = VOLUME, 2 = NORMAL, 4 = PRESSURE	
3	0X4008	SYSTEM SYNC	-	-	integer	2	-	RO	System self-diagnosis items: 0 = normal, 1 = error	
4	0X400C	SYSTEM FLASH	-	-	integer	2	-	RO	System self-diagnosis items: 0 = normal, 1 = error	
5	0X4010	SYSTEM FLASH RW	-	-	integer	2	-	RO	System self-diagnosis items: 0 = normal, 1 = error	
6	0X4014	SYSTEM ENV.	-	-	integer	2	-	RO	System self-diagnosis items: 0 = normal, 1 = error	
7	0X4018	SYSTEM MATRIX	-	-	integer	2	-	RO	System self-diagnosis items: 0 = normal, 1 = error	
8	0X401C	SYSTEM BATTERY	-	-	integer	2	-	RO	System self-diagnosis items: 0 = normal, 1 = error	
9	0X4020	SYSTEM RTC	-	-	integer	2	-	RO	System self-diagnosis items: 0 = normal, 1 = error	
10	0X4024	SYSTEM AP1	-	-	integer	2	-	RO	System self-diagnosis items: 0 = normal, 1 = error	
11	0X4028	SYSTEM DP1	-	-	integer	2	-	RO	System self-diagnosis items: 0 = normal, 1 = error	
12	0X402C	SYSTEM RTD	-	-	integer	2	-	RO	System self-diagnosis items: 0 = normal, 1 = error	
13	0X4030	SYSTEM AP2	-	-	integer	2	-	RO	System self-diagnosis items: 0 = normal, 1 = error	
14	0X4034	SYSTEM EXT. CONTROL	-	-	integer	2	-	RO	System self-diagnosis items: 0 = normal, 1 = error	
15	0X4038	SYSTEM BD TEMP	-	-	integer	2	-	RO	System self-diagnosis items: 0 = normal, 1 = error	
16	0X403C	SYSTEM GAS INPUT	-	-	integer	2	-	RO	System self-diagnosis items: 0 = normal, 1 = error	
17	0X4040	SYSTEM CRITICAL	-	-	integer	2	-	RO	System self-diagnosis items: 0 = normal, 1 = error	
18	0X4044	SN [0-1]	-	-	integer	2	-	RO	HIGH = SN 1 digit, LOW = SN 2 digit	
19	0X4048	SN [2 – 3]	-	-	integer	2	-	RO	HIGH = SN 3 digit, LOW = SN 4 digit	
20	0X404C	SN [4 – 5]	-	-	integer	2	-	RO	HIGH = SN 5 digit, LOW = SN 6 digit	
21	0X4050	SN [6 – 7]	-	-	integer	2	-	RO	HIGH = SN 7 digit, LOW = SN 8 digit	
22	0X4054	SN [8 – 9]	-	-	integer	2	-	RO	HIGH = SN 9 digit, LOW = SN 10 digit	

MULTIPLE READ (0xA000 ~0xAFFF)

00

N o.	ADDR	PARAMETER	ISO	US	- FORMAT	W I D T H	S C A L E	R / W	DESC.	MISC.
1	0xA000	AP Pressure value	Кра	psi	0.00	4	1	RO	Psi See conversion table for unit calculation	
2	0XA004	RTD Temperature value	°C	F	0.0	4	1	RO	F, K See conversion table for unit calculation	
3	0XA008	NORMAL FLOW RATE	N m^3 /h N m^3 /M	Nft ³ /h Nft ³ /M	0.00	4	-	RO	Nf t^3 /h For unit and minute calculation, see conversion table	
4	0XA00C	TOTAL NORMAL FLOW	Nm ³	Nft ³	0.00	4	-	RO	Nft ³ See conversion table for unit calculation	

MULTIPLE READ (0xB000 ~0xBFFF)

N o.	ADDR	PARAMETER	ISO	US	- FORMAT	W I D T H	S C A L E	R / W	DESC.	MISC.
1	0xB000	AP Pressure value	kpa	Psi	0.00	4	-	RO	Psi See conversion table for unit calculation	
2	0XB004	AP2 Pressure value	Кра	psi	0.00	4	-	RO	psi See conversion table for unit calculation	
3	0XB008	MASS FLOW RATE	Kg/h Kg/M	Lb/h Lb/M	0.00	4	-	RO	lb/h For unit and minute calculation, see conversion table	
4	0XB00C	TOTAL MASS FLOW	kg	Lb	0.00	4	-	RO	lb See conversion table for unit calculation	
5	0XB010	TARGET	-	-	0.0	4	-	RW		

Chapter 5 Failure Diagnosis and A/S

5.1 Abnormality measures

5.2 Protective measures

An internal fuse is installed to protect the circuit from overvoltage.

When reverse voltage is input, there is a cut-off function to protect the flow meter, but it does not operate.

5.3. Maintenance (A/S)

Since the FN-mass flowmeter's operator is safely protected by a protective device, do not release the interlock device to maintain the protective structure.

Do not arbitrarily remove the blanking element that sealed the opening.

Do not open the protective parts arbitrarily while power is on.

Do not remove the protective device arbitrarily while power is on.

Do not open protective parts when explosive gas may be present.

When separating the FN-mass flowmeter, open the equivalent valve of the 3-way block valve to equalize the pressure, then completely close the low and high pressure side valves and separate the FN-mass flowmeter connected to the block valve. do it..

The replacement of the FN-mass flowmeter must be done by our maintenance specialist.

6. 1. Area of use

FN-MASS use area is divided into general area, special use area, and overload unused area.

The general-purpose area can be used in the entire pressure range, the special area is the range other than the general-purpose area where flow rate can be displayed, and the overload area is the area outside the limit line of the flow rate display.

Before installing the flow meter, the user informs the supplier of the pressure range (minimum value and maximum value) of the flow rate so that the generalpurpose range can be set.

Max. When the differential pressure sensor range is reached on the DP line, the alarm warning light A1 flashes.

. Warranty

Golden Rule's KC-7730 is thoroughly managed by ISO 9001 quality assurance system.

The free service period is limited to cases that occur under normal use within the warranty period (1 year after shipment),

The following cases are treated as paid service.

- ① Failure that occurred in the product after the warranty period has passed
- ② Failure that has not been repaired by our company or caused by arbitrarily altering the structure, performance, and function of the product.
- ③ Failure due to user's intentional negligence or inexperience
- ④ Malfunction due to faulty power connection or abnormal power supply
- (5) Failure due to defects in peripheral devices
- 6 Failure caused by natural disaster

In the event of a breakdown after the warranty period or due to negligence in use, we will provide repair support at the minimum cost by applying the actual cost.

The mass flowmeter of Golden Rule Co., Ltd. is tested according to the certification conditions of the certification body before shipment.

Mass Flow meter manufacturer

a

Golden Rules Co.,Ltd.

A-1805, Songdomirae-ro 30, Yeonsu-gu, Incheon, Korea Tel : +82-32-817-1240 E-mail : <u>hhm617@hanmail.net</u> http://www.goldenrules.co.kr

1000